Course Type	Course Code	Name of the Course		T	P	Credits
DP1	NMNC512	Remote Sensing and Image Processing Lab	0	0	3	1.5

Learning outcomes: students will be able to process the remotely sensed satellite data to get different level of products.

Course Objectives: Students will learn the practical aspects of remotely sensed (satellite) data processing acquired in optical and infrared region of electromagnetic energy.

Unit No.	Topics to be covered	Contact Hours	Learning Outcomes
I	Introduction to different types of remote sensing data products	3	Students will know the different -types of remote sensing data products
II	Training on visual interpretation and analysis of a multi-spectral satellite data and stereo pair panchromatic satellite data.	3	Students will be able to analyse the satellite image visually
Ш	Demo on different types of remote sensing based software and Initial Statistics Extraction from satellite data.	3	Students will know the capability of different types of remote sensing based software and will be able to extract the statistical information of satellite data
IV	Atmospheric Correction applied on satellite image.	3	Students will be able to apply atmospheric correction on satellite data
V	Geometric Correction applied on satellite image	3	Students will be able to apply Geometric Correction on satellite data
VI	Image Enhancement techniques	3	Students will be able to apply Image Enhancement techniques on satellite data
VII	Image transformation/Interpretation of Indices derived from Multispectral Satellite Data	3	Students will be able to transform the image
VIII	Fusion of Multispectral satellite data and panchromatic satellite data	3	Students will be able to generate a value added product
IX	Land Use/Land Cover (LULC) Classification using Multispectral Satellite Data	3	Students will be able to generate a derived product (LULC classified Map)
X	Land Use/Land Cover (LULC) change detection using Multispectral Satellite Data	3	Students will be able to generate a derived product (LULC Change detection Map)
XI	Mineral Mapping using Hyper spectral Satellite Data	3	Students will be able to generate a derived product (Mineral Map)
XII	Land Surface Temperature (LST) Mapping using Thermal Infrared (TIR) satellite Data/Land Surface Temperature Radiometer Data	3	Students will be able to generate a derived product (LST Map)
	Mini Project	3	
	Practice & Review	3	
	Total	42	

Text Books

- 1. George Joseph (2005), Fundamentals of Remote Sensing
- 2. John A. Richards (2012), Remote Sensing and Digital Image Analysis

Reference Books

1. Thomas L., Ralph W. Kiefer, and Jonathan C. (2015), Remote Sensing and Image Interpretation.